Bila $N$ adalah jumlah zat radioaktif pada waktu $t$, maka jumlah yang terurai tiap satuan waktu dapat dinyatakan dengan persamaan diferensial, yaitu:
$ \begin{align} -\frac{dN}{dt} = \lambda N \end{align} $ ,
dimana :
$ \lambda = \, $ tetapan peluruhan, yang besarnya tergantung jenis zat radioaktif. Bila persamaan di atas di integrlakan, maka akan menjadi :
$ \begin{align} -\frac{dN}{dt} & = \lambda N \\ -\frac{1}{N} dN & = \lambda dt \\ \int \limits_{N_0}^N \, -\frac{1}{N} dN & = \int \limits_0^t \, \lambda dt \\ -[\ln N]_{N_0}^N & = [\lambda t ]_0^t \\ -( \ln N - \ln N_0) & = [\lambda t ] - [\lambda . 0 ] \\ -\ln \frac{N}{N_0} & = \lambda t \\ \ln \frac{N}{N_0} & = - \lambda t \\ \frac{N}{N_0} & = e^{- \lambda t } \\ N & = N_0e^{- \lambda t } \end{align} $ ,
dengan $ N_0 = \, $ jumlah zat radioaktif pada saat $ t = 0 \, $ (mula-mula).
Jadi, kita peroleh rumus : $ \begin{align} N = N_0 \times e^{- \lambda t } \end{align} $
Pada gambar di atas tampak bahwa setelah waktu $ t $ jumlah zat radioaktif menjadi $\frac{1}{2} $ dari jumlah semula. Dalam hal ini kita mengenal waktu yang diperlukan oleh zat radioaktif untuk meluruh menjadi separuh (setengah) dari jumlah semula, yang dikenal dengan waktu paruh $(t\frac{1}{2})$. Jadi, pada saat $t = t\frac{1}{2}$ , maka $N = \frac{1}{2}N_0$ , sehingga:
$\begin{align} -\ln \frac{N}{N_0} & = \lambda t \\ \ln \left( \frac{N}{N_0} \right)^{-1} & = \lambda t \\ \ln \frac{N_0}{N} & = \lambda t \\ \ln \frac{N_0}{\frac{1}{2}N_0} & = \lambda t\frac{1}{2} \\ \ln 2 & = \lambda t\frac{1}{2} \\ 0,693 & = \lambda t\frac{1}{2} \\ t\frac{1}{2} & = \frac{0,693}{ \lambda } \end{align} $
Artinya waktu paruh bisa dihitung dengan rumus : $ t\frac{1}{2} = \frac{0,693}{ \lambda } $
Bila jumlah zat radioaktif mulamula = $N_0$ dan waktu paruh = $t\frac{1}{2}$ , maka setelah waktu paruh pertama jumlah zat radioaktif tinggal $\frac{1}{2}N_0 \, $ dan setelah waktu paruh kedua tinggal $\frac{1}{4}N_0$. Setelah zat radioaktif meluruh selama waktu $t$, maka zat radioaktif yang tinggal ($N$), dapat dirumuskan dengan:
Contoh soal :
Suatu zat radioaktif X sebanyak 12,8 gram dan memiliki waktu paruh 2 tahun. Berapa gram zat radioaktif X yang tersisa setelah 6 tahun?
Jawab:
Diketahui: $N_0 = 12,8$ gram, $t\frac{1}{2} = 2 $ tahun, $t = 6$ tahun
Ditanyakan: $N = ... ?$
$ \begin{align} N & = \left( \frac{1}{2} \right)^\frac{t}{t\frac{1}{2}} N_0 \\ & = \left( \frac{1}{2} \right)^\frac{6}{2} \times 12,8 \\ & = \left( \frac{1}{2} \right)^3 \times 12,8 \\ & = \frac{1}{8} \times 12,8 \\ & = 1,6 \end{align} $
Jadi, zat radioaktif X yang tersisa setelah 6 tahun adalah sebesar 1,6 gram.
Demikian pembahasan materi Kecepatan Peluruhan dan Waktu Paruh dan contohnya. Silahkan juga baca materi lain yang berkaitan dengan Reaksi pada Inti atau reaksi nuklir.
Tidak ada komentar:
Posting Komentar
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.